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Percept Action

Value

Novelty

Reliability

ValuePercept Activation

Action Tuples are organized in Action Tuples are organized in 
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on their learned value and on their learned value and 
reliability reliability 
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Sit

Attention Window:
Look here for cues that appear 
correlated with increased 
likelihood of action being 
followed by a good thing

Good Thing

Consequences Window:
Assume any good or bad things that 
happen here are associated with the 
preceding action and the context in 
which it was performed

Scratch

Time

Four Important Tasks 
Are Performed During 
Credit Assignment
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•• Update valueUpdate value
•• Create new Action Create new Action Tuples Tuples as as 
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DiscoveryDiscovery

Most Worthy Action
Tuple Gets Credit
Most Worthy Action
Tuple Gets Credit

Sit

Time

“sit-utterance” 
perceived. 

Good Thing

“click” 
perceived. 

<true/Sit> 
begins  

But credit goes to 
<“sit-utterance”/Sit>

Create New Action
Tuples As Appropriate
Create New Action
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Implicit Feedback 
Guides State Space 
Discovery

Good Thing  appears. 
Create a new Percept with 
“beg” example as initial 
model 

Time

Utterance occurs 
within window but 
not classified by 
any existing 
percept 

“beg”

This means that Percepts are only created to 
recognize “promising” utterances

Beg Good ThingScratch

Implicit Feedback  
Identifies Good Examples
Implicit Feedback  
Identifies Good Examples

Beg Good Thing

Good Thing  appears. 
Update model of “beg” 
utterance using “beg” 
that occurred in attention 
window

Scratch

Time

Classify utterance 
as “beg”. 

“beg”

This means model is built using good examples
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Unrewarded Examples 
Don’t Get Added to 
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Unrewarded Examples 
Don’t Get Added to 
Models

Beg Sit

Beg ends without food 
appearing. Do not update 
model since example may 
have been bad.

Scratch

Time

Utterance classified as 
“Beg” by mistake. Beg 
becomes active.

“Leg”

Actually, bad examples can be used to build 
model of “not-Beg.”

Implicit Feedback Guides 
Action Space Discovery
Implicit Feedback Guides 
Action Space Discovery

Good Thing appears. 
Compare accumulated 
path to known paths

Time

“Follow-your-nose” action 
accumulates path through 
pose-space 

Down

Down gets the credit for Good Thing appearing, 
rather than “Follow-your-nose.”

Follow-your-nose Good Thing

If Path Is Novel, Create a 
New Motor Program and 
Action

If Path Is Novel, Create a 
New Motor Program and 
Action

Good Thing appears. 
Compare accumulated 
path to known paths

Time

“Follow-your-nose” action 
accumulates path through 
pose-space 

Figure-8 is created and subsequent examples 
of Figure-8 are used to improve model of path

Figure-8

Follow-your-nose Good Thing

Dobie T. Coyote…Dobie T. Coyote…

QuickTime™ and a Animation decompressor are needed to see this picture.
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